Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2) → F(X1, X2)
ACTIVE(h(X)) → G(X, X)
H(active(X)) → H(X)
G(mark(X1), X2) → G(X1, X2)
MARK(g(X1, X2)) → G(mark(X1), X2)
MARK(b) → ACTIVE(b)
ACTIVE(f(X, X)) → H(a)
ACTIVE(g(a, X)) → F(b, X)
ACTIVE(h(X)) → MARK(g(X, X))
MARK(f(X1, X2)) → F(mark(X1), X2)
ACTIVE(a) → MARK(b)
F(X1, active(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
MARK(h(X)) → ACTIVE(h(mark(X)))
F(X1, mark(X2)) → F(X1, X2)
ACTIVE(f(X, X)) → MARK(h(a))
MARK(g(X1, X2)) → MARK(X1)
G(active(X1), X2) → G(X1, X2)
MARK(g(X1, X2)) → ACTIVE(g(mark(X1), X2))
MARK(a) → ACTIVE(a)
MARK(f(X1, X2)) → MARK(X1)
G(X1, mark(X2)) → G(X1, X2)
G(X1, active(X2)) → G(X1, X2)
MARK(h(X)) → MARK(X)
ACTIVE(g(a, X)) → MARK(f(b, X))
H(mark(X)) → H(X)
MARK(h(X)) → H(mark(X))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2) → F(X1, X2)
ACTIVE(h(X)) → G(X, X)
H(active(X)) → H(X)
G(mark(X1), X2) → G(X1, X2)
MARK(g(X1, X2)) → G(mark(X1), X2)
MARK(b) → ACTIVE(b)
ACTIVE(f(X, X)) → H(a)
ACTIVE(g(a, X)) → F(b, X)
ACTIVE(h(X)) → MARK(g(X, X))
MARK(f(X1, X2)) → F(mark(X1), X2)
ACTIVE(a) → MARK(b)
F(X1, active(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
MARK(h(X)) → ACTIVE(h(mark(X)))
F(X1, mark(X2)) → F(X1, X2)
ACTIVE(f(X, X)) → MARK(h(a))
MARK(g(X1, X2)) → MARK(X1)
G(active(X1), X2) → G(X1, X2)
MARK(g(X1, X2)) → ACTIVE(g(mark(X1), X2))
MARK(a) → ACTIVE(a)
MARK(f(X1, X2)) → MARK(X1)
G(X1, mark(X2)) → G(X1, X2)
G(X1, active(X2)) → G(X1, X2)
MARK(h(X)) → MARK(X)
ACTIVE(g(a, X)) → MARK(f(b, X))
H(mark(X)) → H(X)
MARK(h(X)) → H(mark(X))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 9 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2) → F(X1, X2)
F(X1, mark(X2)) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(active(X1), X2) → F(X1, X2)
F(X1, mark(X2)) → F(X1, X2)
F(mark(X1), X2) → F(X1, X2)
F(X1, active(X2)) → F(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(X1, active(X2)) → G(X1, X2)
G(X1, mark(X2)) → G(X1, X2)
G(mark(X1), X2) → G(X1, X2)
G(active(X1), X2) → G(X1, X2)

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(X1, mark(X2)) → G(X1, X2)
G(X1, active(X2)) → G(X1, X2)
G(mark(X1), X2) → G(X1, X2)
G(active(X1), X2) → G(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)
H(mark(X)) → H(X)

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)
H(mark(X)) → H(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(g(X1, X2)) → ACTIVE(g(mark(X1), X2))
MARK(f(X1, X2)) → MARK(X1)
MARK(h(X)) → MARK(X)
ACTIVE(f(X, X)) → MARK(h(a))
ACTIVE(h(X)) → MARK(g(X, X))
ACTIVE(g(a, X)) → MARK(f(b, X))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(g(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(f(X1, X2)) → MARK(X1)
MARK(h(X)) → MARK(X)
MARK(g(X1, X2)) → MARK(X1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(a) = 0   
POL(active(x1)) = x1   
POL(b) = 0   
POL(f(x1, x2)) = 2 + 2·x1 + x2   
POL(g(x1, x2)) = 2 + x1 + x2   
POL(h(x1)) = 2 + 2·x1   
POL(mark(x1)) = x1   



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ RuleRemovalProof
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(g(X1, X2)) → ACTIVE(g(mark(X1), X2))
ACTIVE(f(X, X)) → MARK(h(a))
ACTIVE(h(X)) → MARK(g(X, X))
ACTIVE(g(a, X)) → MARK(f(b, X))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(g(X1, X2)) → ACTIVE(g(mark(X1), X2)) at position [0] we obtained the following new rules:

MARK(g(g(x0, x1), y1)) → ACTIVE(g(active(g(mark(x0), x1)), y1))
MARK(g(b, y1)) → ACTIVE(g(active(b), y1))
MARK(g(f(x0, x1), y1)) → ACTIVE(g(active(f(mark(x0), x1)), y1))
MARK(g(h(x0), y1)) → ACTIVE(g(active(h(mark(x0))), y1))
MARK(g(y0, mark(x1))) → ACTIVE(g(mark(y0), x1))
MARK(g(x0, x1)) → ACTIVE(g(x0, x1))
MARK(g(a, y1)) → ACTIVE(g(active(a), y1))
MARK(g(y0, active(x1))) → ACTIVE(g(mark(y0), x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ RuleRemovalProof
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(g(f(x0, x1), y1)) → ACTIVE(g(active(f(mark(x0), x1)), y1))
MARK(g(h(x0), y1)) → ACTIVE(g(active(h(mark(x0))), y1))
ACTIVE(f(X, X)) → MARK(h(a))
MARK(g(a, y1)) → ACTIVE(g(active(a), y1))
MARK(g(y0, active(x1))) → ACTIVE(g(mark(y0), x1))
MARK(g(g(x0, x1), y1)) → ACTIVE(g(active(g(mark(x0), x1)), y1))
MARK(g(b, y1)) → ACTIVE(g(active(b), y1))
MARK(g(y0, mark(x1))) → ACTIVE(g(mark(y0), x1))
ACTIVE(h(X)) → MARK(g(X, X))
ACTIVE(g(a, X)) → MARK(f(b, X))
MARK(g(x0, x1)) → ACTIVE(g(x0, x1))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(g(f(x0, x1), y1)) → ACTIVE(g(active(f(mark(x0), x1)), y1))
MARK(g(h(x0), y1)) → ACTIVE(g(active(h(mark(x0))), y1))
MARK(g(g(x0, x1), y1)) → ACTIVE(g(active(g(mark(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.

MARK(h(X)) → ACTIVE(h(mark(X)))
ACTIVE(f(X, X)) → MARK(h(a))
MARK(g(a, y1)) → ACTIVE(g(active(a), y1))
MARK(g(y0, active(x1))) → ACTIVE(g(mark(y0), x1))
MARK(g(b, y1)) → ACTIVE(g(active(b), y1))
MARK(g(y0, mark(x1))) → ACTIVE(g(mark(y0), x1))
ACTIVE(h(X)) → MARK(g(X, X))
ACTIVE(g(a, X)) → MARK(f(b, X))
MARK(g(x0, x1)) → ACTIVE(g(x0, x1))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( active(x1) ) =
/0\
\0/
+
/10\
\00/
·x1

M( a ) =
/0\
\0/

M( g(x1, x2) ) =
/1\
\0/
+
/10\
\00/
·x1+
/00\
\00/
·x2

M( f(x1, x2) ) =
/1\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( h(x1) ) =
/1\
\0/
+
/10\
\10/
·x1

M( mark(x1) ) =
/0\
\0/
+
/10\
\00/
·x1

M( b ) =
/0\
\0/

Tuple symbols:
M( MARK(x1) ) = 0+
[1,0]
·x1

M( ACTIVE(x1) ) = 1+
[0,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

active(a) → mark(b)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(h(X)) → active(h(mark(X)))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(h(X)) → mark(g(X, X))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(b) → active(b)
mark(a) → active(a)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
g(mark(X1), X2) → g(X1, X2)
h(active(X)) → h(X)
h(mark(X)) → h(X)
f(X1, active(X2)) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ RuleRemovalProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(g(b, y1)) → ACTIVE(g(active(b), y1))
MARK(g(y0, mark(x1))) → ACTIVE(g(mark(y0), x1))
ACTIVE(f(X, X)) → MARK(h(a))
ACTIVE(h(X)) → MARK(g(X, X))
ACTIVE(g(a, X)) → MARK(f(b, X))
MARK(g(x0, x1)) → ACTIVE(g(x0, x1))
MARK(g(a, y1)) → ACTIVE(g(active(a), y1))
MARK(f(X1, X2)) → ACTIVE(f(mark(X1), X2))
MARK(g(y0, active(x1))) → ACTIVE(g(mark(y0), x1))

The TRS R consists of the following rules:

active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
mark(h(X)) → active(h(mark(X)))
mark(g(X1, X2)) → active(g(mark(X1), X2))
mark(a) → active(a)
mark(f(X1, X2)) → active(f(mark(X1), X2))
mark(b) → active(b)
h(mark(X)) → h(X)
h(active(X)) → h(X)
g(mark(X1), X2) → g(X1, X2)
g(X1, mark(X2)) → g(X1, X2)
g(active(X1), X2) → g(X1, X2)
g(X1, active(X2)) → g(X1, X2)
f(mark(X1), X2) → f(X1, X2)
f(X1, mark(X2)) → f(X1, X2)
f(active(X1), X2) → f(X1, X2)
f(X1, active(X2)) → f(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.